Publications and Theses

Group Publications since 2005 (in reverse order):

  • A chip-scale atomic beam clock, Gabriela D. Martinez, Chao Li, Alexander Staron, John Kitching, Chandra Raman and William R. McGehee, Nature Communications volume 14, Article number: 3501 (2023) https://doi.org/10.1038/s41467-023-39166-1
  • Bottom-up approach to room temperature quantum systems, Bochao Wei, Chao Li, Ce Pei and Chandra Raman, to appear in Physical Review A, e-print at https://arxiv.org/abs/2212.03970.
  • Stimulated Laser Cooling in a Compact Geometry Using Microfabricated Atomic Beam Collimators, Chao Li, Xiao Chai, Linzhao Zhuo, Bochao Wei, Ardalan Lotfi, Farrokh Ayazi and Chandra Raman, Phys. Rev. Applied 20, 034042 (2023)
    https://doi.org/10.1103/PhysRevApplied.20.034042.
  • Collimated versatile atomic beam source with alkali dispensers, Bochao WeiAlexandra CrawfordYorick AndewegLinzhao ZhuoChao Li, and Chandra Raman, Appl. Phys. Lett. 120,144001 (2022)  https://doi.org/10.1063/5.0087155
  • Magnetic solitons in an immiscible two-component Bose-Einstein condensate. Chai, Xiao, Li You, and Chandra Raman. Physical Review A 105.1 (2022): 013313.
  • Magnetic soliton: from two to three components with SO(3) symmetry, Xiao Chai, Di Lao, Kazuya Fujimoto, and Chandra Raman, Letter in Physical Review Research 3, L012003 (2021) https://doi.org/10.1103/PhysRevResearch.3.L012003.
  • High Quality factor micro-ring resonator for strong atom-light interactions using miniature atomic beams, Ali Eshaghian Dorche, Bochao Wei, Chandra Raman and Ali Adibi, Optics Letters Vol. 45, Issue 21, pp. 5958-5961 (2020) http://ol.osa.org/abstract.cfm?URI=ol-45-21-5958
  • Magnetic Solitons in a Spin-1 Bose-Einstein Condensate, Xiao Chai, Di Lao, Kazuya Fujimoto, Ryusuke Hamazaki, Masahito Ueda and Chandra Raman, Phys. Rev. Lett. 125, 030402 (2020) https://doi.org/10.1103/PhysRevLett.125.030402
  • Robust characterization of microfabricated atomic beams on a six-month time scale, Chao Li, Bochao Wei, Xiao Chai, Jeremy Yang, Anosh Daruwalla, Farrokh Ayazi and C. Raman,  Physical Review Research Vol. 2, Issue 2, 023239 (2020)
    https://doi.org/10.1103/PhysRevResearch.2.023239
  • Nematic-Orbit Coupling and Nematic Density Waves in Spin-1 Condensates, Di Lao, Chandra Raman, C. A. R. Sá de Melo, Phys. Rev. Lett. 124, 173203 (2020).
    https://doi.org/10.1103/PhysRevLett.124.173203.
  • Cascaded collimator for atomic beams traveling in planar silicon devices, Chao Li, Xiao Chai, Bochao Wei, Jeremy Yang, Anosh Daruwalla, Farrokh Ayazi and C. Raman, Nature Communications 10, 1 p. 1831 (2019), https://doi.org/10.1038/s41467-019-09647-3.
  • Subnanometer optical linewidth of thulium atoms in rare-gas crystals, Vinod Gaire, Chandra S. Raman, and Colin V. Parker, Phys. Rev. A 99, 022505 (2019) https://doi.org/10.1103/PhysRevA.99.022505. 
  • Hanbury Brown-Twiss correlations and multimode dynamics in quenched, inhomogeneous density spinor Bose-Einstein condensates, A. Vinit and C. Raman,  New Journal of Physics Spotlight on Multicomponent Quantum Matter, New J. Phys.20 095003 2018 https://doi.org/10.1088/1367-2630/aadc74,  e-print at https://arxiv.org/abs/1806.04231.
  • Precise measurements on a quantum phase transition in antiferromagnetic spinor Bose-Einstein condensates, A. Vinit and C. Raman, Phys. Rev. A 95, 011603(R) (2017) https://doi.org/10.1103/PhysRevA.95.011603.
  • Optical Control of a Quantum Rotor, Lukas F. Buchmann, H. Jing, C. Raman, P. Meystre, Phys. Rev. A 87, 031601(R) (2013).
  • Antiferromagnetic Spatial Ordering in a Quenched One-dimensional Spinor Gas, A. Vinit, E. M. Bookjans, C. A. R. Sa ́ de Melo and C. Raman, Phys. Rev. Lett. 110, 165301 (2013).
  • Molecular frame Auger electron energy spectrum from N2 , James P. Cryan et al, J. Phys. B: At. Mol. Opt. Phys. 45 055601 (2012).
  • Quantum Phase Transition in an Antiferromagnetic Spinor Bose-Einstein Condensate, E. M. Bookjans, A. Vinit, C. Raman, Phys. Rev. Lett. 107 (19), 195306 (2011).
  • Auger Electron Angular Distribution of Double Core-Hole States in the Molecular Reference Frame, James P. Cryan et al. , Phys. Rev. Lett. 105, 083004 (2010).
  • Time-resolved pump-probe experiments at the LCLS, James M. Glownia, et al., Optics Express, Vol. 18, Issue 17, pp. 17620-17630 (2010).
  • Light-Induced Atomic Desorption for loading a Sodium Magneto-Optical Trap, Gustavo Telles, Tetsuya Ishikawa, Matthew Gibbs, Chandra Raman, Phys. Rev. A 81, 032710 (2010).
  • Continuous vortex pumping into a spinor condensate with magnetic fields. Z. F. Xu, P. Zhang, C. Raman and L. You, Phys. Rev. A 78, 043606 (2008).
  • Detecting level crossings without solving the Hamiltonian I. Mathematical background. M. Bhattacharya and C. Raman, Phys. Rev. A 75, 033405 (2007).
  • Detecting level crossings without solving the Hamiltonian II.  Applications to Atoms and Molecules. M. Bhattacharya and C. Raman, Phys. Rev. A 75, 033406 (2007).
  • Dynamics of rotating Bose-Einstein condensates probed by Bragg scattering, S. R. Muniz, D. S. Naik, M.  Bhattacharya and C. Raman, Journal of Mathematics and Computers in Simulation, Volume 74, Issues 4-5 , 30 March 2007, Pages 397-404.
  • Axicon Lens for Coherent Matter Waves, S. R. Muniz, S. D. Jenkins, T. A. B. Kennedy, D. S. Naik, and C. Raman, Optics Express, Vol. 14, Issue 20, pp. 8947-8957 (2006).
  • Detecting Level Crossings without Looking at the Spectrum, M. Bhattacharya and C. Raman, Phys. Rev. Lett. 97, 140405 (2006).
  • Bragg Spectroscopy of Vortex Lattices in Bose-Einstein condensates. S. R. Muniz, D. S. Naik and C. Raman, Rapid Communication in Phys. Rev. A 73, 041605(R) (2006).
  • Metastable Bose-Einstein condensate in a linear potential. D. S. Naik, S. R. Muniz, and C. Raman, Rapid Communication in Phys. Rev. A 72, 051606(R) (2005).
  • Optically Plugged Quadrupole Trap for Bose-Einstein Condensates. D. S. Naik and C. Raman, Phys. Rev. A 71, 033617 (2005).
  • Group Theses:
  1. Anshuman Vinit Ph.D. thesis.
  2. Devang Naik, Ph.D. thesis.
  3. John Breuer master’s thesis.