Publications and Theses

Group Publications since 2005 (in reverse order):

  • A chip-scale atomic beam clock, Gabriela D. Martinez, Chao Li, Alexander Staron, John Kitching, Chandra Raman and William R. McGehee, Nature Communications volume 14, Article number: 3501 (2023) https://doi.org/10.1038/s41467-023-39166-1
  • Bottom-up approach to room temperature quantum systems, Bochao Wei, Chao Li, Ce Pei and Chandra Raman, to appear in Physical Review A, e-print at https://arxiv.org/abs/2212.03970.
  • Stimulated Laser Cooling in a Compact Geometry Using Microfabricated Atomic Beam Collimators, Chao Li, Xiao Chai, Linzhao Zhuo, Bochao Wei, Ardalan Lotfi, Farrokh Ayazi and Chandra Raman, Phys. Rev. Applied 20, 034042 (2023)
    https://doi.org/10.1103/PhysRevApplied.20.034042.
  • Collimated versatile atomic beam source with alkali dispensers, Bochao WeiAlexandra CrawfordYorick AndewegLinzhao ZhuoChao Li, and Chandra Raman, Appl. Phys. Lett. 120,144001 (2022)  https://doi.org/10.1063/5.0087155
  • Magnetic solitons in an immiscible two-component Bose-Einstein condensate. Chai, Xiao, Li You, and Chandra Raman. Physical Review A 105.1 (2022): 013313.
  • Magnetic soliton: from two to three components with SO(3) symmetry, Xiao Chai, Di Lao, Kazuya Fujimoto, and Chandra Raman, Letter in Physical Review Research 3, L012003 (2021) https://doi.org/10.1103/PhysRevResearch.3.L012003.
  • High Quality factor micro-ring resonator for strong atom-light interactions using miniature atomic beams, Ali Eshaghian Dorche, Bochao Wei, Chandra Raman and Ali Adibi, Optics Letters Vol. 45, Issue 21, pp. 5958-5961 (2020) http://ol.osa.org/abstract.cfm?URI=ol-45-21-5958
  • Magnetic Solitons in a Spin-1 Bose-Einstein Condensate, Xiao Chai, Di Lao, Kazuya Fujimoto, Ryusuke Hamazaki, Masahito Ueda and Chandra Raman, Phys. Rev. Lett. 125, 030402 (2020) https://doi.org/10.1103/PhysRevLett.125.030402
  • Robust characterization of microfabricated atomic beams on a six-month time scale, Chao Li, Bochao Wei, Xiao Chai, Jeremy Yang, Anosh Daruwalla, Farrokh Ayazi and C. Raman,  Physical Review Research Vol. 2, Issue 2, 023239 (2020)
    https://doi.org/10.1103/PhysRevResearch.2.023239
  • Nematic-Orbit Coupling and Nematic Density Waves in Spin-1 Condensates, Di Lao, Chandra Raman, C. A. R. Sá de Melo, Phys. Rev. Lett. 124, 173203 (2020).
    https://doi.org/10.1103/PhysRevLett.124.173203.
  • Cascaded collimator for atomic beams traveling in planar silicon devices, Chao Li, Xiao Chai, Bochao Wei, Jeremy Yang, Anosh Daruwalla, Farrokh Ayazi and C. Raman, Nature Communications 10, 1 p. 1831 (2019), https://doi.org/10.1038/s41467-019-09647-3.
  • Subnanometer optical linewidth of thulium atoms in rare-gas crystals, Vinod Gaire, Chandra S. Raman, and Colin V. Parker, Phys. Rev. A 99, 022505 (2019) https://doi.org/10.1103/PhysRevA.99.022505. 
  • Hanbury Brown-Twiss correlations and multimode dynamics in quenched, inhomogeneous density spinor Bose-Einstein condensates, A. Vinit and C. Raman,  New Journal of Physics Spotlight on Multicomponent Quantum Matter, New J. Phys.20 095003 2018 https://doi.org/10.1088/1367-2630/aadc74,  e-print at https://arxiv.org/abs/1806.04231.
  • Precise measurements on a quantum phase transition in antiferromagnetic spinor Bose-Einstein condensates, A. Vinit and C. Raman, Phys. Rev. A 95, 011603(R) (2017) https://doi.org/10.1103/PhysRevA.95.011603.
  • Optical Control of a Quantum Rotor, Lukas F. Buchmann, H. Jing, C. Raman, P. Meystre, Phys. Rev. A 87, 031601(R) (2013).
  • Antiferromagnetic Spatial Ordering in a Quenched One-dimensional Spinor Gas, A. Vinit, E. M. Bookjans, C. A. R. Sa ́ de Melo and C. Raman, Phys. Rev. Lett. 110, 165301 (2013).
  • Molecular frame Auger electron energy spectrum from N2 , James P. Cryan et al, J. Phys. B: At. Mol. Opt. Phys. 45 055601 (2012).
  • Quantum Phase Transition in an Antiferromagnetic Spinor Bose-Einstein Condensate, E. M. Bookjans, A. Vinit, C. Raman, Phys. Rev. Lett. 107 (19), 195306 (2011).
  • Auger Electron Angular Distribution of Double Core-Hole States in the Molecular Reference Frame, James P. Cryan et al. , Phys. Rev. Lett. 105, 083004 (2010).
  • Time-resolved pump-probe experiments at the LCLS, James M. Glownia, et al., Optics Express, Vol. 18, Issue 17, pp. 17620-17630 (2010).
  • Light-Induced Atomic Desorption for loading a Sodium Magneto-Optical Trap, Gustavo Telles, Tetsuya Ishikawa, Matthew Gibbs, Chandra Raman, Phys. Rev. A 81, 032710 (2010).
  • Continuous vortex pumping into a spinor condensate with magnetic fields. Z. F. Xu, P. Zhang, C. Raman and L. You, Phys. Rev. A 78, 043606 (2008).
  • Detecting level crossings without solving the Hamiltonian I. Mathematical background. M. Bhattacharya and C. Raman, Phys. Rev. A 75, 033405 (2007).
  • Detecting level crossings without solving the Hamiltonian II.  Applications to Atoms and Molecules. M. Bhattacharya and C. Raman, Phys. Rev. A 75, 033406 (2007).
  • Dynamics of rotating Bose-Einstein condensates probed by Bragg scattering, S. R. Muniz, D. S. Naik, M.  Bhattacharya and C. Raman, Journal of Mathematics and Computers in Simulation, Volume 74, Issues 4-5 , 30 March 2007, Pages 397-404.
  • Axicon Lens for Coherent Matter Waves, S. R. Muniz, S. D. Jenkins, T. A. B. Kennedy, D. S. Naik, and C. Raman, Optics Express, Vol. 14, Issue 20, pp. 8947-8957 (2006).
  • Detecting Level Crossings without Looking at the Spectrum, M. Bhattacharya and C. Raman, Phys. Rev. Lett. 97, 140405 (2006).
  • Bragg Spectroscopy of Vortex Lattices in Bose-Einstein condensates. S. R. Muniz, D. S. Naik and C. Raman, Rapid Communication in Phys. Rev. A 73, 041605(R) (2006).
  • Metastable Bose-Einstein condensate in a linear potential. D. S. Naik, S. R. Muniz, and C. Raman, Rapid Communication in Phys. Rev. A 72, 051606(R) (2005).
  • Optically Plugged Quadrupole Trap for Bose-Einstein Condensates. D. S. Naik and C. Raman, Phys. Rev. A 71, 033617 (2005).
  • Group Theses:
  1. Xiao Chai Ph.D. thesis.
  2. Bochao Wei Ph.D. thesis.
  3. Chao Li Ph.D. thesis.
  4. Di (Roady) Lao Ph.D. thesis.
  5. Anshuman Vinit Ph.D. thesis.
  6. Devang Naik, Ph.D. thesis.
  7. John Breuer master’s thesis.